ICUS Weekly News Monitor 11-4-2016

1.  Medical Xpress,  Nov 3, 2016,  Breast-friendly, radiation-free alternative to mammogram in the making
 
2.  BCC Research,  Nov 1, 2016,  Technology Powering Growth in Global Markets for Medical Ultrasound Devices, Reports BCC Research
 
____________________________________
Medic al Xpress
Nov 3, 2016
 
Breast-friendly, radiation-free alternative to mammogram in the making
 
Each year around a million women in the Netherlands undergo mammograms for early detection of possible breast cancer. It's an unpleasant procedure that uses X-rays. Researchers at Eindhoven University of Technology are working on a 'breast-friendly' method, without radiation, that is more accurate and generates 3D rather than 2D images. They published their proof of concept last month in the online journal Scientific Reports.
 
In the regular screening method the breast is squeezed tight between two plates in order to produce one or more good X-ray photos. Apart from being unpleasant, it is not without risk. The X-rays used can themselves be a contributor to the onset of cancer. Moreover, it is often unclear whether the anomaly found is a cancer or not. More than two-thirds of the cases where something worrying can be seen on the X-ray photos is false-positive: after the analysis of biopsies they are not found to be cancers. This is why science is seeking alternatives.
 
Researchers at TU Eindhoven have now cleared a major scientific hurdle towards a new technology in which the patient lies on a table and the breast hangs freely in a bowl. Using special echography (inaudible sound waves) a 3D image of the breast is made where cancer can be identified; the researchers therefore expect there to be many fewer false-positive results.
 
The new technology builds on the patient-friendly prostate cancer detection method developed at TU/e whereby the doctor injects the patient with harmless microbubbles. An echoscanner allows these bubbles to be precisely monitored as they flow through the blood vessels of the prostate. Since tumors and healthy tissue have different blood vessel structures, the presence and location of tumors become visible. This method works well for the prostate and this is now being widely tested in hospitals in the Netherlands, China and, soon, Germany. For breast cancer the method had not yet been suitable due to motion and because the breast is too large, which seriously limits the possibilities of a standard echoscanner.
 
Researchers Libertario Demi, Ruud van Sloun and Massimo Mischi have now developed a variant of the echography method that is suitable for breast investigation. The method is known as Dynamic Contrast Specific Ultrasound Tomography. Echography with microbubbles uses the fact that the bubbles will vibrate in the blood at the same frequency as the sound produced by the echoscanner, as well as at twice that frequency; the so-called second harmonic. By capturing the vibration, you know where the bubbles are located. But body tissue also generates harmonics, and that disturbs the observation.
 
For the new method the researchers are using a phenomenon that Mischi happened upon by chance and later investigated its properties together with Demi. They saw that the second harmonic was a little delayed by the gas bubbles. The researchers have now developed a new visualization method. The more bubbles the sound-wave encounters on its route, the bigger the delay. By measuring the delay, the researchers can thus localize the gas bubbles and do so without any disturbance because the harmonic generated by the body tissue is not delayed, and is therefore discernible. This difference, however, can only be seen if the sound is captured on the other side. So this method is perfectly suited to organs that can be approached from two sides, like the breast.
 
The researchers are currently putting together an international, strong medical team to start performing preclinical studies. Application in practice is certainly ten or so years away, Mischi expects. Moreover, he forecasts that the technology that has been developed will probably not operate on a standalone basis but in combination with other methods, which will create a better visualization. One of the candidates for this elastography, a variant of echography whereby the difference in the rigidity of the tumor and healthy tissue can be used to detect cancer.
 
 
____________________________________
BCC Research
Nov 1, 2016
 
Technology Powering Growth in Global Markets for Medical Ultrasound Devices, Reports BCC Research
 
Recent advancements in ultrasound technology include the wireless and immediate transmission of images using applications and dedicated cloud servers. BCC Research reveals in its new report that this trend toward inexpensive, portable, and wireless ultrasound imaging is helping move the global markets for medical ultrasound devices.
 
Diagnostic ultrasound, also called sonography or diagnostic medical sonography, is a noninvasive imaging method that utilizes high-frequency sound waves to produce images of structures within your body.
 
The global market for medical ultrasound devices is expected to reach $9.9 billion by 2021, up from $7.3 billion in 2016, reflecting a five-year compound annual growth rate (CAGR) of 6.4%. The Asia-Pacific market, the largest and fastest-growing market, should reach $2.4 billion and $3.7 billion in 2016 and 2021, respectively, demonstrating a five-year CAGR of 9.5%. The Latin American market, the second-fastest growing market with an anticipated five-year CAGR of 8%, should grow from $576 million in 2016 to $847 million in 2021.
 
Recent innovations include hand-carried ultrasound (HCU) units, advances in three-dimensional (3-D) and four-dimensional (4-D) ultrasound imaging, improvements in image quality, and the use of ultrasound contrast agents to improve sensitivity for the detection of tumors. Another key development is the emergence of sonoelastography to help diagnose liver fibrosis staging, thyroid nodules, and lymph node and indeterminate breast lump characterization.
 
Technological advances in diagnostic ultrasound imagery have significantly improved patient diagnostics by providing immediate clinical information. These rapid advances are directly related to the parallel advancements in electronics, computing and transducer technology together with sophisticated signal processing techniques. The availability of instantaneous diagnostic data has helped reduce overall healthcare costs by replacing more expensive diagnostic examinations.
 
"One of ultrasound's key advantages over other imaging modalities is its increasing mobility," says BCC Research analyst Paul Taylor. "From innovations such as portable handheld devices to the world's first wireless transducer, ultrasound can quickly image internal organs such as the heart, kidney and liver, without being impeded by cables or bulky machines. This key feature of ultrasound not only improves the point of care at hospitals, but also the public's access to medical imaging, especially in developing regions where it is needed."
Medical Ultrasound Devices: Techs and Global Markets (IAS040B) analyzes the values, growth rates, shares, dynamics, and factors of major market and submarkets. Global market drivers and trends, with data from 2015, estimates for 2016, and projections of CAGRs through 2021 also are provided.
 
Editors and reporters who wish to speak with the analyst should contact Steven Cumming at This email address is being protected from spambots. You need JavaScript enabled to view it. .
 
About BCC Research
BCC Research is a publisher of market research reports that provide organizations with intelligence to drive smart business decisions. By partnering with industry experts worldwide, BCC Research provides unbiased measurements and assessments of global markets covering major industrial and technology sectors, including emerging markets. Founded in 1971, BCC Research is a unit of Eli Global, LLC. For more information about BCC Research, please visit bccresearch.com. Follow BCC Research on Twitter at @BCCResearch.

ICUS Sponsors

ICUS gratefully acknowledges its 2017 sponsors:

dentons-logo2

silver-level

philips-icus-logo

samsung-logo

Toshiba Medical logo resized

siemens-new-original

mindray

Contact ICUS

  • Address: 1900 K Street, N.W.
    Washington, DC 20006-1102, USA
  • Telephone: 202-408-6199

About ICUS

ICUS is the world’s only professional society exclusively devoted to contrast-enhanced ultrasound (CEUS) medical imaging technology.

Learn more...

You are here: Home ICUS Weekly News Monitors ICUS Weekly News Monitor 11-4-2016