ICUS Weekly News Monitor 8-4-2016

1. Journal of Controlled Release,  Aug 28, 2016,  Acoustic Cluster Therapy (ACT) enhances the therapeutic efficacy of paclitaxel and Abraxane® for treatment of human prostate adenocarcinoma in mice       Authors:  Annemieke van Wamel, et al
2.  UMR Inserm U930,  Jun 30, 2016,  A New Dawn for Sonoporation with Creation of a Proof-of-Concept Consortium           Media release
Journal of Controlled Release
Volume 236, doi:10.1016/j.jconrel.2016.06.018
Aug 28, 2016,
Acoustic Cluster Therapy (ACT) enhances the therapeutic efficacy of paclitaxel and Abraxane® for treatment of human prostate adenocarcinoma in mice
Authors:  Annemieke van Wamela, Per Christian Sontumb, Andrew Healeyb, Svein Kvåleb, Nigel Bushc, Jeffrey Bamberc, Catharina de Lange Daviesa
a Dept. of Physics, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
b Phoenix Solutions AS, Oslo, Norway
c Joint Dept. of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
Acoustic cluster therapy (ACT) is a novel approach for ultrasound mediated, targeted drug delivery. In the current study, we have investigated ACT in combination with paclitaxel and Abraxane® for treatment of a subcutaneous human prostate adenocarcinoma (PC3) in mice. In combination with paclitaxel (12 mg/kg given i.p.), ACT induced a strong increase in therapeutic efficacy; 120 days after study start, 42% of the animals were in stable, complete remission vs. 0% for the paclitaxel only group and the median survival was increased by 86%. In combination with Abraxane® (12 mg paclitaxel/kg given i.v.), ACT induced a strong increase in the therapeutic efficacy; 60 days after study start 100% of the animals were in stable, remission vs. 0% for the Abraxane® only group, 120 days after study start 67% of the animals were in stable, complete remission vs. 0% for the Abraxane® only group. For the ACT + Abraxane group 100% of the animals were alive after 120 days vs. 0% for the Abraxane® only group. Proof of concept for Acoustic Cluster Therapy has been demonstrated; ACT markedly increases the therapeutic efficacy of both paclitaxel and Abraxane® for treatment of human prostate adenocarcinoma in mice.
Graphical abstract
UMR Inserm U930
Jun 30, 2016
A New Dawn for Sonoporation with Creation of a Proof-of-Concept Consortium
Media release
TOURS, France - The Imaging and Ultrasound Team of the Imaging and Brain Inserm Unit U930 in Tours France, working in collaboration with colleagues at the Erasmus University Medical Center in Rotterdam, the Academic Medical Center in Amsterdam, the University Medical Center in Utrecht, (all 3 in the Netherlands), the University of Washington, Seattle USA and Advice-US Consulting, a Swiss Ultrasound Consultancy firm; have today launched a proof-of-concept research Consortium to evaluate the safety, tolerability and efficacy of sonoporation. This is a drug-delivery system based on the use of ultrasound and microbubbles in combination with oncolytic therapeutics to treat a range of tumour types in late-stage cancer patients. The Consortium tasked with the singular goal of translating sonoporation to the clinic is funded by a small pump-priming grant from LE STUDIUM® Loire Valley Institute of Advanced Studies, and brings together a multidisciplinary cohort of scientist, engineers and clinical practitioners (Prof Mike Averkiou, Dr Ayache Bouakaz, Dr Jean-Michel Escoffre Prof Nico de Jong, Dr Klazina Kooiman, Prof Heneke van Laarhoven, Prof Chrit Moonen, Dr Anthony Novell, Dr Charles A Sennoga and Prof Francois Tranquart). The Consortium’s scientific programme is led by Dr Ayache Bouakaz and coordinated by Dr Charles A Sennoga (both of Inserm U930). It is anticipated that the protocols developed, if clinically implemented will not only add a new cancer treatment to the clinical oncology toolbox but also go some way to filling existing gaps in our cancer management knowledge.
About Sonoporation:
It has long been recognized that ultrasound waves can facilitate the delivery of both large particles and therapeutic macromolecules into cells and other biological tissues by creating transient nonlethal perforations. Although this requires high acoustic power, well beyond that permitted for medical imaging, the power needed can be greatly reduced when microbubbles are used as an adjunct. This is because microbubbles lower the amount of energy necessary for cavitation, a process in which extreme oscillations induced by ultrasound pulses lead to microbubble collapse. As a result, cavitation of microbubbles in capillary beds increases capillary permeability, which improves local access of the released therapeutic agent. While the potential of sonoporation has already been harnessed as a drug-delivery tool in a wide range of pre-clinical studies, its application in humans is currently limited to a handful of publications. Guided by ultrasound images, researchers can now harness microbubble and ultrasound not only to home in on specific tumours and deliver drugs at precise targets but also monitor treatment response. For more information about sonoporation and the newly launched Sonoporation Consortium, please visit
About Imaging and Brain UMR Inserm U930
Founded in 2004, Inserm U930 seeks to empower this generation of creative scientists to transform medicine. The Inserm "Imaging and Brain" Research Unit U930 at Université François-Rabelais de Tours is interested in normal and pathological brain development, from the perinatal period to adulthood. The main focus of Inserm U930 is to develop, validate and clinically implement, new functional and structural brain imaging methods (MRI, PET, SPECT, EEG, ultrasound) in order to better characterize brain functioning and development; and to better understand brain pathological conditions. Inserm U930 seeks to develop effective new approaches for diagnostics and therapeutics; and disseminate discoveries, tools, methods and data openly to the entire scientific community. Inserm U930 includes faculty, professional staff and students from throughout the Faculty of Medicine, the biomedical research communities of the Université Francois-Rabelais and beyond, with additional collaborations spanning over several private and public institutions in many countries worldwide. For further information about the UMR Inserm U930, please visit

ICUS Sponsors

ICUS gratefully acknowledges its 2017 sponsors:






Contact ICUS

  • Address:  International Contrast Ultrasound Society
    c/o Dentons
    233 S. Wacker Drive, Suite 5900 Chicago, IL 60606-6361
  • Telephone: 202-408-6199

About ICUS

ICUS is the world’s only professional society exclusively devoted to contrast-enhanced ultrasound (CEUS) medical imaging technology.

Learn more...

You are here: Home ICUS Weekly News Monitors ICUS Weekly News Monitor 8-4-2016